
Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Union-Find

Robin Visser

IOI Training Camp
University of Cape Town

3 December 2016

1 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Overview

1 Definition

2 Elementary Solutions
Linked List Approach
Tree Approach

3 Optimisations
Union by Rank
Path Compression

2 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Definition

We want a data structure which keeps track of a set of
elements partitioned into disjoint subsets, which implement the
following three operations:

• MakeSet: Constructs a subset containing a single element.

• Find: Determine which subset a particular element is in.

• Union: Join two subsets into a single subset.

For each subset, Find will usually return a representative
element of that set, and Union will take two representative
elements as its arguments.

3 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Definition

We want a data structure which keeps track of a set of
elements partitioned into disjoint subsets, which implement the
following three operations:

• MakeSet: Constructs a subset containing a single element.

• Find: Determine which subset a particular element is in.

• Union: Join two subsets into a single subset.

For each subset, Find will usually return a representative
element of that set, and Union will take two representative
elements as its arguments.

3 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Definition

We want a data structure which keeps track of a set of
elements partitioned into disjoint subsets, which implement the
following three operations:

• MakeSet: Constructs a subset containing a single element.

• Find: Determine which subset a particular element is in.

• Union: Join two subsets into a single subset.

For each subset, Find will usually return a representative
element of that set, and Union will take two representative
elements as its arguments.

3 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Definition

We want a data structure which keeps track of a set of
elements partitioned into disjoint subsets, which implement the
following three operations:

• MakeSet: Constructs a subset containing a single element.

• Find: Determine which subset a particular element is in.

• Union: Join two subsets into a single subset.

For each subset, Find will usually return a representative
element of that set, and Union will take two representative
elements as its arguments.

3 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Definition

We want a data structure which keeps track of a set of
elements partitioned into disjoint subsets, which implement the
following three operations:

• MakeSet: Constructs a subset containing a single element.

• Find: Determine which subset a particular element is in.

• Union: Join two subsets into a single subset.

For each subset, Find will usually return a representative
element of that set, and Union will take two representative
elements as its arguments.

3 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Linked List Approach

• One easy solution is to use a linked list approach, where
the head of the linked list is the representative element.

• Each element is initially represent by a single linked list
containing just that element.

• The Union operation simply concatenates two linked lists.

• The Find operation traverses through the linked list until
it reaches the head.

Drawback: Union takes O(1) time (assuming pointers to the
tail), but Find takes O(n) time.

Alternatively: Keeping pointers to the head in each node allows
us to have Find in O(1) time, but Union takes O(n) time.

4 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Linked List Approach

• One easy solution is to use a linked list approach, where
the head of the linked list is the representative element.

• Each element is initially represent by a single linked list
containing just that element.

• The Union operation simply concatenates two linked lists.

• The Find operation traverses through the linked list until
it reaches the head.

Drawback: Union takes O(1) time (assuming pointers to the
tail), but Find takes O(n) time.

Alternatively: Keeping pointers to the head in each node allows
us to have Find in O(1) time, but Union takes O(n) time.

4 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Linked List Approach

• One easy solution is to use a linked list approach, where
the head of the linked list is the representative element.

• Each element is initially represent by a single linked list
containing just that element.

• The Union operation simply concatenates two linked lists.

• The Find operation traverses through the linked list until
it reaches the head.

Drawback: Union takes O(1) time (assuming pointers to the
tail), but Find takes O(n) time.

Alternatively: Keeping pointers to the head in each node allows
us to have Find in O(1) time, but Union takes O(n) time.

4 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Linked List Approach

• One easy solution is to use a linked list approach, where
the head of the linked list is the representative element.

• Each element is initially represent by a single linked list
containing just that element.

• The Union operation simply concatenates two linked lists.

• The Find operation traverses through the linked list until
it reaches the head.

Drawback: Union takes O(1) time (assuming pointers to the
tail), but Find takes O(n) time.

Alternatively: Keeping pointers to the head in each node allows
us to have Find in O(1) time, but Union takes O(n) time.

4 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Linked List Approach

• One easy solution is to use a linked list approach, where
the head of the linked list is the representative element.

• Each element is initially represent by a single linked list
containing just that element.

• The Union operation simply concatenates two linked lists.

• The Find operation traverses through the linked list until
it reaches the head.

Drawback: Union takes O(1) time (assuming pointers to the
tail), but Find takes O(n) time.

Alternatively: Keeping pointers to the head in each node allows
us to have Find in O(1) time, but Union takes O(n) time.

4 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Linked List Approach

• One easy solution is to use a linked list approach, where
the head of the linked list is the representative element.

• Each element is initially represent by a single linked list
containing just that element.

• The Union operation simply concatenates two linked lists.

• The Find operation traverses through the linked list until
it reaches the head.

Drawback: Union takes O(1) time (assuming pointers to the
tail), but Find takes O(n) time.

Alternatively: Keeping pointers to the head in each node allows
us to have Find in O(1) time, but Union takes O(n) time.

4 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Tree Approach

• We can alternatively represent the subsets as trees, where
each element simply holds a reference to its parent node.

• Find follows parents until it reaches a root.

• Union attaches the root of the one tree to the root of the
other.

Drawback: This is essentially the same as a linked list, as the
trees could become highly unbalanced, with the Find operation
still taking O(n) time worst case.

5 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Tree Approach

• We can alternatively represent the subsets as trees, where
each element simply holds a reference to its parent node.

• Find follows parents until it reaches a root.

• Union attaches the root of the one tree to the root of the
other.

Drawback: This is essentially the same as a linked list, as the
trees could become highly unbalanced, with the Find operation
still taking O(n) time worst case.

5 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Tree Approach

• We can alternatively represent the subsets as trees, where
each element simply holds a reference to its parent node.

• Find follows parents until it reaches a root.

• Union attaches the root of the one tree to the root of the
other.

Drawback: This is essentially the same as a linked list, as the
trees could become highly unbalanced, with the Find operation
still taking O(n) time worst case.

5 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Tree Approach

• We can alternatively represent the subsets as trees, where
each element simply holds a reference to its parent node.

• Find follows parents until it reaches a root.

• Union attaches the root of the one tree to the root of the
other.

Drawback: This is essentially the same as a linked list, as the
trees could become highly unbalanced, with the Find operation
still taking O(n) time worst case.

5 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Code

Pseudocode:

def MakeSet(x):

parent[x] = x

def Find(x):

if parent[x] == x:

return x

return Find(parent[x])

def Union(x, y):

xRoot, yRoot = Find(x), Find(y)

parent[xRoot] = yRoot

6 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

First optimisation

We can optimise this approach by always attaching the smaller
tree to the root of the larger tree. This is called Union by rank

• We simply keep an additional parameter, the depth of
each node, which denotes the size of the tree it represents.

• Each node is initialised with a depth of 0.

This will ensure each tree stays balanced, therefore resulting in
a worst case time of only O(log n) for the Find operation.

7 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

First optimisation

We can optimise this approach by always attaching the smaller
tree to the root of the larger tree. This is called Union by rank

• We simply keep an additional parameter, the depth of
each node, which denotes the size of the tree it represents.

• Each node is initialised with a depth of 0.

This will ensure each tree stays balanced, therefore resulting in
a worst case time of only O(log n) for the Find operation.

7 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

First optimisation

We can optimise this approach by always attaching the smaller
tree to the root of the larger tree. This is called Union by rank

• We simply keep an additional parameter, the depth of
each node, which denotes the size of the tree it represents.

• Each node is initialised with a depth of 0.

This will ensure each tree stays balanced, therefore resulting in
a worst case time of only O(log n) for the Find operation.

7 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

First optimisation

We can optimise this approach by always attaching the smaller
tree to the root of the larger tree. This is called Union by rank

• We simply keep an additional parameter, the depth of
each node, which denotes the size of the tree it represents.

• Each node is initialised with a depth of 0.

This will ensure each tree stays balanced, therefore resulting in
a worst case time of only O(log n) for the Find operation.

7 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Code

def MakeSet(x):

parent[x] = x

rank[x] = 0

def Union(x, y):

xRoot, yRoot = Find(x), Find(y)

if (xRoot == yRoot): return

if rank[xRoot] < rank[yRoot]:

parent[xRoot] = yRoot

elif rank[xRoot] > rank[yRoot]:

parent[yRoot] = xRoot

else:

parent[yRoot] = xRoot

rank[xRoot] += 1
8 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Second optimisation

We can optimise even further by flattening the tree whenever
we call the Find operation on it (noting that we might as well
have each node pointing directly to its representative). This is
called path compression.

This speeds up future Find operations for those elements, as
well as other elements referencing them

9 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Second optimisation

We can optimise even further by flattening the tree whenever
we call the Find operation on it (noting that we might as well
have each node pointing directly to its representative). This is
called path compression.

This speeds up future Find operations for those elements, as
well as other elements referencing them

9 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Code

def Find(x):

if parent[x] != x:

parent[x] = Find(parent[x])

return parent[x]

10 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Optimised Running Time

Using both optimisation techniques, one obtains an amortised
time per operation of O(α(n)), where α(n) denotes the inverse
Ackermann function. Since this function grows very slowly, it’s
practically constant for all reasonable values of n.

Note: α
(
22

265536
)
= 4.

Quite remarkably, one can prove that we cannot do any better.
O(α(n)) is the tightest bound we can obtain for a disjoint set
data structure.

11 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Optimised Running Time

Using both optimisation techniques, one obtains an amortised
time per operation of O(α(n)), where α(n) denotes the inverse
Ackermann function. Since this function grows very slowly, it’s
practically constant for all reasonable values of n.

Note: α
(
22

265536
)
= 4.

Quite remarkably, one can prove that we cannot do any better.
O(α(n)) is the tightest bound we can obtain for a disjoint set
data structure.

11 / 11



Union-Find

Robin Visser

Definition

Elementary
Solutions

Linked List
Approach

Tree Approach

Optimisations

Union by Rank

Path
Compression

Optimised Running Time

Using both optimisation techniques, one obtains an amortised
time per operation of O(α(n)), where α(n) denotes the inverse
Ackermann function. Since this function grows very slowly, it’s
practically constant for all reasonable values of n.

Note: α
(
22

265536
)
= 4.

Quite remarkably, one can prove that we cannot do any better.
O(α(n)) is the tightest bound we can obtain for a disjoint set
data structure.

11 / 11


	Definition
	Elementary Solutions
	Linked List Approach
	Tree Approach

	Optimisations
	Union by Rank
	Path Compression


